JASPERSE CHEM 210 PRACTICE TEST 3 VERSION 1

Ch. 17: Additional Aqueous Equilibria

Ch. 18: Thermodynamics: Directionality of Chemical Reactions

Key Equations:

For weak acids alone in water: $[H^+] = \sqrt{K_a x [WA]}$	For weak bases alone in water: $[OH^-] = \sqrt{K_b x [WB]}$
pZ= -logZ General definition for p of anything	pH + pOH = 14
$[H^+][HO^-] = 1.00 \times 10^{-14}$	$K_aK_b=1.00 \times 10^{-14}$ for conjugate acid/base pair
For Buffer: pH = pK _a + log[base]/[acid] Henderson-Hasselbalch Equation	$\Delta S^{\circ} = S^{\circ} \text{ (products)} - S^{\circ} \text{ (reactants)}$
$\Delta G^{\circ} = G^{\circ} \text{ (products)} - G^{\circ} \text{ (reactants)}$	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ (T in Kelvin)

- 1. Which of the following substances, when added to a 1L solution of 0.4M HF, could be used to prepare a buffer solution?
 - a. 0.4 moles of HCl only
 - b. 0.4 moles NaF only
 - c. 0.2 moles NaOH only
 - d. both 0.4 moles of NaF and 0.2 moles NaOH
 - e. 0.4 moles of NaCl
- 2. Consider a solution prepared by adding 0.50 moles of CH₃COONa (sodium acetate) to 1.00 L of 1.00M CH₃COOH (acetic acid, $K_a = 1.8 \times 10^{-5}$). If 0.050 moles of HCl is added to this buffer solution, the pH of the solution will drop slightly. The pH does not drastically decrease because the HCl reacts with the _____ present in the buffer solution.
 - a. CH₃COONa
 - b. H⁺
 - c. H₂O
 - d. CH₃COOH
- 3. For the following, in which case would the buffer capacity <u>not</u> be exhausted either by the addition of 0.5 moles of HCl or by the addition of 0.5 moles of NaOH?
 - a. 0.80 M HF and 0.20 M NaF
 - b. 0.80 M HF and 0.90 M NaF
 - c. 0.10 M HF and 0.20 M NaF
 - d. 0.10 M HF and 0.60 M NaF

- 4. Calculate the pH of a solution prepared by dissolving 0.15 mol of benzoic acid (C_6H_5COOH) and 0.30 mol of sodium benzoate (C_6H_5COONa) in 1.00 L of solution. (K_a of $C_6H_5COOH = 6.5 \times 10^{-5}$)
 - a. 2.51
 - b. 3.89
 - c. 4.49
 - d. 10.11
- 5. Consider a solution containing 0.100 M NaF and 0.126 M HF. Calculate the concentration of <u>fluoride ion</u> after addition of 5.00 mL of 0.100 M HCl to 25.0 mL of this solution.
 - a. 0.0850 M
 - b. 0.00167 N
 - c. 0.0980 M
 - d. 0.0667 M
 - e. 0.00253 M
- 6. Calculate the final pH after 20.0 mL of 0.250 M NaOH solution is added to 50.0 mL of 0.200 M HN₃ (K_a = 2.6 x 10⁻⁵).
 - a. 2.61
 - b. 8.79
 - c. 12.21
 - d. 4.59
 - e. 7.00
- 7. To prepare a buffer solution with pH = 4.70, how many moles of NaN₃ should be added to a 1.0 L solution that is 0.40 M in HN₃? (K_a for HN₃ = 2.6 x 10⁻⁵).
 - a. 0.12 moles
 - b. 0.31 moles
 - c. 0.40 moles
 - d. 0.52 moles
 - e. none of the above

- 8. What is the final pH when 0.56 moles of HCl is added to 1.0 L of 0.56M NaOCl solution. $(K_a \text{ for HOCl} = 3.0 \text{ x } 10^{-8})$ (Assume the final volume is still 1.0 L).
 - a. 7.77
 - b. 3.89
 - c. 4.76
 - d. 5.33
 - e. none of the above
- 9. If you start with 40.0 mL of 0.80 M HClO₄, calculate the [H⁺] concentration after addition of 60.0 mL of 0.60 M KOH.
 - a. 4.0 x 10⁻² M b. 4.0 x 10⁻³ M c. 2.5 x 10⁻¹² M d. 2.5 x 10⁻¹³ M

 - e. none of the above
- 10. An initial pH of 1.00 and an equivalence point at pH 7.0 corresponds to a titration curve for
 - a. A strong acid to which strong base is added
 - b. A strong base to which strong acid is added
 - c. A weak acid to which strong base is added
 - d. A weak base to which strong acid is added
 - e. A weak base to which weak acid is added
- 11. A weak acid HX has $K_a = 4.0 \times 10^{-6}$. What is the concentration of the anion X^- in a solution in which 0.40M HX and 0.20M HCl are combined?
 - a. 3.5×10^{-3}
 - b. 2.0×10^{-3}
 - c. 2.0×10^{-6}
 - d. 8.0 x 10⁻⁶
 - e. none of the above
- 12. Which of the following combinations of chemicals in 1.0 L of water will give a solution with a basic pH?
 - a. 1 mole of HCl and 1 mole of KN₃
 - b. 1 mole of HCl and 1 mole of NaOH
 - c. 1 mole of HCl and 0.8 mole of NaOH
 - d. 1 mole of HCN and 1 mole of NaOH

- 13. What is the molarity of an HCl solution if 25.5 mL of this solution required 37.5 mL of 0.175 M NaOH to reach the equivalence point?
 - a. 0.119
 - b. 1.83 x 10⁻⁴
 - c. 0.257
 - d. 0.365
- 14. Which of the following combinations would give a pH of 7.00 at the "equivalence point" (when equal moles of each have been added)
 - a. $HClO_4 + NaF$
 - b. $HNO_3 + KOH$
 - c. $HCl + NH_3$
 - d. HOCl + NaOH
 - e. None of the above
- 15. The solubility of which one of the following will not be affected by the pH of the solution?
 - a. Na₃PO₄
 - b. NaF
 - c. KNO₃
 - d. Al_2S_3
 - e. $Mn(OH)_2$
- 16. Zinc carbonate (ZnCO₃, 125.4 g/mol) has a $K_{sp} = 1.4 \times 10^{-11}$. How many grams of ZnCO₃ can dissolve in 1.0 L of water?
 - a. 4.69 x 10⁻⁴ g/L b. 3.74 x 10⁻⁶ g/L c. 6.39 x 10⁻² g/L d. 5.43 x 10⁻⁴ g/L

 - e. none of the above
- 17. The solubility of Mn(OH)₂ is 2.2×10^{-5} mol/L. What is the K_{sp} of Mn(OH)₂?
 - a. 1.1×10^{-14}

 - b. 4.3 x 10⁻¹⁴ c. 2.1 x 10⁻¹⁴
 - d. 4.8×10^{-10}
 - e. none of the above

18. Consider the following table of K_{sp} values. Which one of the compounds shown in the table is the <u>least</u> soluble?

Compound	K_{sp}
CdS	8.0 x 10 ⁻²⁷
CuS	6.3 x 10 ⁻³⁶
PbS	8.0 x 10 ⁻²⁸
MnCO ₃	1.8 x 10 ⁻¹¹

- a. CdS
- b. CuS
- c. PbS
- d. MnCO₃

19. What is the solubility (in moles/liter) of $PbCl_2$ in a solution that is 0.15 M solution in HCl? ($K_{sp} PbCl_2 = 1.6 \times 10^{-5}$)

- a. 2.0×10^{-3}
- b. 1.1 x 10⁻⁴
- c. 1.8×10^{-4}
- d. 7.1 x 10⁻⁴
- e. none of the above

20. Which of the following statements is true regarding the impact of additional chemicals on the solubility of a saturated solution of CaCO₃?

- a. CaCl₂will decrease it's solubility, NaOH will increase it's solubility
- b. HCl will decrease it's solubility, CaCl₂ will increase it's solubility
- c. CaCl₂ will decrease it's solubility, HCl will increase it's solubility
- d. NaCl will decrease it's solubility, HCl will increase it's solubility

21. Calculate ΔS° (at 25°C in J/mol•K) for the following reaction, given the standard entropies shown (in J/mol•K):

Standard entropies:
$$2Fe(s) + 3Cl_2(g) \rightarrow 2FeCl_3(s)$$

27 223 142

- a. -439
- b. +108
- c. -108
- d. -380
- e. +380

22. Which of the following reactions would have a positive value for ΔS° ?

a.
$$Ba(OH)_2(s) + CO_2(g) \rightarrow BaCO_3(s) + H_2O(l)$$

b.
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

c.
$$2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$$

c.
$$2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$$

d. $AgNO_3(aq) + HCl(aq) \rightarrow AgCl(s) + HNO_3(aq)$

23. Determine the value of ΔG° (in kJ/mol) for the following reaction using data from the table below.

Substance	$\Delta G_{\rm f}^{\circ}$ (kJ/mol)
$H_2O(g)$	-228
$H_2O_2(g)$	-105

$$2H_2O(g) + O_2(g) \rightarrow 2H_2O_2(g)$$

- a. -246
- b. 666
- c. 246
- d. -666

24. What is the value for ΔH° for this reaction at 25°C?

$$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$$
 $\Delta G^{\circ} = +91.2 \text{ kJ/mol}$
 $\Delta S^{\circ} = 135 \text{ J/K} \cdot \text{mol}$

- a. 40 kJ/mol
- b. 226 kJ/mol
- c. 91 kJ/mol
- d. 131 kJ/mol

25. Based on your knowledge of chemical reactions, which of the following processes has a negative standard free energy change at 25°C?

a.
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$
 only

- b. $2\text{Na}(s) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{NaOH}(aq) + \text{H}_2(g) \text{ only}$
- c. $2H_2O(1) \rightarrow 2H_2(g) + O_2(g)$
- d. $\frac{\text{both CH}_4(g) + 2O_2(g)}{\text{CO}_2(g) + 2O_2(g)} \Rightarrow \frac{\text{CO}_2(g) + 2O_2(g)}{\text{CO}_2(g) + 2O_2(g)} = \frac{1}{2} \frac{1}$ $+ H_2 (g)$

26. Which one of the following has the greatest entropy?

- a. HCl (1)
- b. HCl (s)
- c. HCl (g)
- d. These are all the same

- 27. When a reaction is found by thermodynamics to be product-favored,
 - a. It will be always be very rapid as written
 - b. Once it starts, it is possible for it to proceed as written without outside intervention
 - c. It is also reactant-favored
 - d. The equilibrium position lies very far to the left
- 28. Under which temperature conditions will the following reaction be product-favored?

$$A(s) + B(g) \rightarrow C(g) + D(g)$$
 $\Delta H^{\circ} = +44.2 \text{ kJ/mol}$ $\Delta S^{\circ} = +135 \text{ J/mol} \cdot \text{K}$

- a. Above 54°C
- b. Above 327°C
- c. Below 54°C
- d. Below 159°C
- e. Always
- 29. The entropy of the universe is
 - a. constant
 - b. continually decreasing
 - c. continually increasing
 - d. zero
- 30. What are the signs for ΔH and ΔS for a reaction that is product-favored at low temperature but reactant -favored at high temperature?
 - a. ΔH is positive, ΔS is positive
 - b. ΔH is negative, ΔS is negative
 - c. ΔH is positive, ΔS is negative
 - d. ΔH is negative, ΔS is positive
- 31. Consider the following product-favored reaction occurring in an automobile engine $(C_8H_{18} \text{ is gasoline})$. The signs for ΔH , ΔS , and ΔG would be:

$$2 C_8 H_{18} (l) + 25 O_2 (g) \rightarrow 16 CO_2 (g) + 18 H_2O (g)$$

- a. -, +, +
- b. +, -, -c. +, +, -d. -, +, -

- 32. "Ice", frozen water, melts at 0° C. What are the signs for ΔG , ΔH and ΔS when ice is melting at 0°C?
 - a. ΔG is negative, ΔH is negative, and ΔS is positive
 - b. ΔG is positive, ΔH is positive, and ΔS is positive
 - c. $\Delta G = 0$, ΔH is negative, and ΔS is negative
 - d. $\Delta G = 0$, ΔH is positive, and ΔS is positive
 - e. none of the above
- 33. Solid Ammonium nitrate is highly soluble in water. When it dissolves the solution gets very cold. Based on this experimental data alone, what must be the signs for ΔH , ΔS , and ΔG for the process, and is the process enthalpy driven, entropy driven, both, or neither?
 - a. +, +, +Neither
 - b. +, -, -Both
 - c. +, +, -Entropy driven
 - d. -, -, -Enthalpy driven
- 34. Which of the following statements is false?
 - a. When a reaction is exothermic, this results in dispersal of energy and in an increase in the entropy of the surrounding
 - b. Both the dispersal of energy and the dispersal of matter tend to be favorable things
 - c. All exothermic reactions are product-favored
 - d. Gaseous molecules tend to have higher entropy than solid molecules

Jasperse Chem 160 Answers, Test3 Version 1

Ι.	D
2	Α

3. B

4. C 5. D

6. D

7. D

8. B 9. D

10. A

11. D

12. D

13. C 14. B

15. C

16. A 17. B

18. B

19. D

20. C 21. A

22. C

23. C

24. D

25. D 26. C

27. B

28. A

29. C 30. B

31. D

32. D

33. C

34. C